The Y-Δ transform, also written wye-delta and known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like the letter Y and the Greek capital letter Δ. This circuit transformation theory was published by Arthur Edwin Kennelly in 1899.[1]
Contents |
[[Image:Theoreme de kennelly.png|right|thumb|400px|Illustration of the transform in its T-Π representation, ]
The Y-Δ transform is known by a variety of other names, mostly based upon the two shapes involved, listed in either order. The Y, spelt out as wye, can also be called T or star; the Δ, spelt out as delta, can also be called triangle, Π (spelt out as pi), or mesh. Thus, common names for the transformation include wye-delta or delta-wye, star-delta, star-mesh, or T-Π.
The transformation is used to establish equivalence for networks with three terminals. Where three elements terminate at a common node and none are sources, the node is eliminated by transforming the impedances. For equivalence, the impedance between any pair of terminals must be the same for both networks. The equations given here are valid for complex as well as real impedances.
The general idea is to compute the impedance at a terminal node of the Y circuit with impedances , to adjacent nodes in the Δ circuit by
where are all impedances in the Δ circuit. This yields the specific formulae
The general idea is to compute an impedance in the Δ circuit by
where is the sum of the products of all pairs of impedances in the Y circuit and is the impedance of the node in the Y circuit which is opposite the edge with . The formula for the individual edges are thus
Resistive networks between two terminals can theoretically be simplified to a single equivalent resistor (more generally, the same is true of impedance). Series and parallel transforms are basic tools for doing so, but for complex networks such as the bridge illustrated here, they do not suffice.
The Y-Δ transform can be used to eliminate one node at a time and produce a network that can be further simplified, as shown.
The reverse transformation, Δ-Y, which adds a node, is often handy to pave the way for further simplification as well.
In graph theory, the Y-Δ transform means replacing a Y subgraph of a graph with the equivalent Δ subgraph. The transform preserves the number of edges in a graph, but not the number of vertices or the number of cycles. Two graphs are said to be Y-Δ equivalent if one can be obtained from the other by a series of Y-Δ transforms in either direction. For example, the Petersen graph family is a Y-Δ equivalence class.
To relate from Δ to from Y, the impedance between two corresponding nodes is compared. The impedance in either configuration is determined as if one of the nodes is disconnected from the circuit.
The impedance between N1 and N2 with N3 disconnected in Δ:
To simplify, let be the sum of .
Thus,
The corresponding impedance between N1 and N2 in Y is simple:
hence:
Repeating for :
and for :
From here, the values of can be determined by linear combination (addition and/or subtraction).
For example, adding (1) and (3), then subtracting (2) yields
thus,
where
For completeness:
Let
We can write the Δ to Y equations as
Multiplying the pairs of equations yields
and the sum of these equations is
Factor from the right side, leaving in the numerator, canceling with an in the denominator.
-Note the similarity between (8) and {(1),(2),(3)}
Divide (8) by (1)
which is the equation for . Dividing (8) by (2) or (3) (expressions for or ) gives the remaining equations.